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The relationships between the Lie-algebraic description of continuously dis- 
tributed dislocations and the global affine invariance of their tensorial density 
are studied. The affinely-invariant Lagrange description of static self-equilibrium 
distributions of dislocations is proposed and field equations describing distribu- 
tions of internal stresses and couple stresses are formulated. The analogy between 
the proposed theory of dislocations and "3-fold electrodynamics" is formulated. 

1. I N T R O D U C T I O N  

In this work we will deal with a crystalline body whose crystal structure 
is a three-dimensional monoatomic and oriented Bravais lattice, distorted 
by the occurrence of  continuously distributed dislocations (Trzesowski, 
1987a, p. 317). This crystalline structure is described, in the theory of 
dislocations, with the help of a physical requirement that the distorted 
lattice is uniquely defined everywhere (Bilby et al., 1955). This means that 
the material structure under consideration can be described by assigning 
to each point of  the body an oriented triad of base vectors: 

CI)p = (E~(p); a = 1, 2, 3), Ea(p) ~ Tp(~)  (1) 

where ~ denotes a body understood as a three-dimensional smooth and 
oriented differentiable manifold, globally diffeomorphic to an open and 
simply-connected subset of  a three-dimensional Euclidean point space, and 
Tp(9~) is the space tangent to the body in the point p ~ ~ (Trzesowski, 
1987b, p. 1059). We will call the smooth field ~ :p ~ ~3-> qbp the Bravais 
moving frame.  
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The base vector fields of a Bravais moving frame �9 = (Ea) in general 
do not commute with each other: 

[Ea, Eb] = C~bEc, C% c C ~ ( ~ )  (2) 

where [Ea, E b ] = E a  O E b - E b  o E~ is the commutator product (bracket) of 
vector fields Ea and Eb and functions C~b define the so-called object o f  

anholonomity  (Schouten, 1954). The integral curves of the base vector fields 
are considered as the lattice lines of  the distorted crystalline structure (Bilby, 
1960). 

Let ~*  :p ~ ~-> qbp* denote the Bravais moving coframe: 

qb* = (Ea (p ) ;  a = 1, 2, 3), E ~ ( p )  ~ T*p(~) 
(3) 

( E ~ ( p ) , E b ( p ) ) = ~ ,  

where T * ( ~ )  is the cotangent space. The triad of  exterior differentials of 
base covector fields belonging to the Bravais moving coframe 

"7" = ( ' 7 " a  ; a = 1, 2, 3), r ~ = dE ~ (4) 

is an infinitesimal counterpart  of  the systems of  Burgers vectors of the 
distorted lattice (Bilby, 1960). We will call this triad the Burgers field. 
Therefore, the Burgers field is a measure of  a distortion of  the crystalline 
structure due to dislocations. The representation of a Burgers field with 
respect to the Bravais moving coframe is uniquely defined by the object of  
anholonomity: 

c a 1 a z ~ = S~cE b ^ E , Sbc = --~Cbc (5) 

where ^ denotes the exterior product, and defines a tensorial measure of 
the dislocation density (Bilby, 1960): 

S[qb] = E ~ |  = S ~ c E a Q E b |  c (6) 

It is easy to see that the dependence qb ~ S[qb] is invariant under the 
group GL§ of  all real 3 x 3 matrices with positive determinant (the proper 
full linear group in 3 real dimensions) (Slawianowski, 1985): 

VL ~ GL+(3), S[qbL] = S[qb] (7) 

where it was taken into account that the group GL§ acts on the Bravais 
moving frame qb = (E~) and the Bravais moving coframe qb* = (E ") accord- 
ing to the following rules: 

~ L  = (EaL~,; b = 1, 2, 3) 

@*L= (Lo~Eb ;  a = 1,2, 3) (8) 

L =  II t~,; a, b = 1, 2, 311, (E", Eb)= ~ 
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This global invariance is very important because it is an invariance property 
of the fundamental physical field describing the distortion of  the crystalline 
structure due to dislocations (see Section 3). 

It is well known that the tensorial density S[(P] of dislocations is 
identical to the torsion tensor of the so-called teleparallelism connection 
induced on the body ~ by the Bravais moving frame (P (see Section 3). 
The covariant derivative V ̀~ corresponding to this connection is uniquely 
defined by the demand that the Bravais moving frame (P should be 
covariantly constant: 

Vq'E~ = 0, i.e., V~'Ea = 0 (9) 

From the purely geometrical as well as from the physical point of view, the 
simplest and most "homogeneous"  case is that for which not only the 
Bravais moving frame but also the Burgers field is covariantly constant: 

V'~r" = 0, i.e., Vq)S = 0 (10) 

It is equivalent to the condition that the object of anholonomity is a 
(P-parallel geometrical object: 

C~c = -2S~c = const (11) 

If the Burgers field is covariantly constant, we will say that the Bravais 
moving frame and its induced teleparallelism are closed. In this case we 
will also say that the distribution of  dislocations is uniformly dense 
(Trzesowski, 1987b, p. 1059). In crystals with uniformly dense distributions 
of dislocations, all the possible types of the crystal structure distortions can 
be described by the Bianchi classification of three-dimensional real Lie 
algebras (Trzesowski, 1987b, p. 1059; see Section 2). Thereby, the question 
appears of  how to construct field equations describing distributions of 
dislocations in the crystalline body, and admitting a closed Bravais moving 
frame as their solution. In this work the such field equations, corresponding 
to the closed Bravais moving frames of an orthogonal type (Section 2), are 
proposed in the case of static self-equilibrium distributions of dislocations 
(Section 3). 

2. LIE-ALGEBRAI C D E S C R I P T I O N  

The closed Bravais moving frame (P (Section 1) spans a three- 
dimensional real Lie algebra fl[(p] of (p-parallel vector fields on the body: 

fl[(p] = {v = vaE~: v ~ = const} (12) 

The constants of anholonomity C~,c are the structure constants of this Lie 
algebra [equations (2) and (11)]. Therefore, in crystals with uniformly dense 
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distributions of dislocations, all the possible types of lattice line systems 
(see Section 1) can be described by the well-known Bianchi classification 
of three-dimensional real Lie algebras (e.g., Barut and Raczka, 1977). 
Thereby, we obtain the classification of types of crystal structure distortions 
due to uniformly dense distributions of dislocations (Trzesowski, 1987b, 
p. 1059). In this sense we can talk about the classification of the basic types 
of  dislocations distributions. For example, in the case of an Abelian Lie 
algebra 

C~c = 0, i.e., S = 0 (13) 

the distortion is removable, i.e., the distortion of lattice lines is induced by 
a global deformation of a body (Trzesowski, 1987a, p. 317). 

In this work we will consider the case of a simple Lie algebra character- 
ized by the condition that the so-called Killing metric tensor 

C[qrp] = Cab[ d) ]Ea @ E b 
(14) 

Cob[alP] = C,,dCb~C d = 4S~dSg 

uniquely defined by the torsion tensor, is nonsingular: 

detllcab[qS]ll # 0 (15) 

There are only two types of simple three-dimensional real Lie algebras. 
These are Lie algebras of a (nonsingular) orthogonal type represented by 
Lie algebra so(3) of the Euclidean rotation group SO(3) {tensor c[~]  of 
signature ( - - - ) }  and Lie algebra so(2, 1) of the three-dimensional Lorentz 
rotation group S0(2 ,  1) {tensor e[q~] of signature (++-)} .  The dislocations 
of Euclidean rotation type can be called disclinations (Trz~sowski, 1987a, 
p. 317; 1987b, p. 1059). Therefore, according to this definition, disclinations 
are rather a type of distribution of dislocations than a separate kind of line 
defect. It should be stressed that the above definition of (continuously 
distributed) disclinations is not generally accepted in the literature (e.g., 
de Witt, 1973). The dislocations of Lorentz rotation type are dislocations of  
shear type because a Lorentz rotation can be considered as the shear 
deformation changing a square into a rhomb (Trzesowski, 1987a, p. 317). 

Let us observe that the Killing metric tensor e[qb] is invariant under 
the proper full linear group: 

VLE GL+(3), e[@L] = e [ ~ ]  (16) 

This suggests that the existence of a metric tensor proportional to the 
nonsingular Killing-like metric tensor, 

C[dp] = -b2c[dg] = Cab[d~]E a @ E b 
(17) 

Cab[alP] = -4b2S~dSdc, S~,~ ~ C~176 b = const 
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where sgn C[qb] = ( + + + )  or ( - - + ) ,  can be considered as a definition of 
such a class of  Bravais moving frames that is closed under the action of 
the proper  full linear group. We will call this metric tensor associated with 
the Bravais moving frame qb. If the associated metric tensor exists, then we 
will say that the distribution of dislocations corresponding to it is the 
distribution of a (nonsingular) orthogonal type. Because 

[S] = [1], [C] = cm 2, [E,~] = [E a ] = [1] (18) 

where [. 1 is the designation of an absolute dimension of a tensor (Schouten, 
1951) and the cgs unit system is used, we will put [hi = cm. Therefore, the 
constant b is a characteristic length of the distortion of the lattice and its 
interpretation as the characteristic length of Burgers vectors seems the most 
natural. 

3. STATIC FIELD EQUATIONS 

in our description of  a crystalline body with dislocations, the Bravais 
moving frame is a fundamental physical field describing locally the material 
structure as well as a current configuration of  that body. Therefore, in the 
case of Bravais moving frames noninteracting with other physical fields, 
the equations describing locally a static equilibrium configuration of the 
crystalline body can be formulated in the form of  Euler-Lagrange equations 
for variations of an action functional of the self-interacting Bravais moving 
frame dp: 

I(f~, qb) = f .  ~[qb] (19) 

where f~ c ~ is a three-dimensional regular region (with a regular closed 
boundary) and ~ [ ~ ]  is a differential 3-form on ~ (a Lagrangian) func- 
tionally depending on qb. 

The global invariance (7) means that homogeneous deformations of a 
body with dislocations do not influence their tensorial density S[cb]--the 
fundamental physical field describing the distortion of the crystalline struc- 
ture due to dislocations. Therefore, we can anticipate the same invariance 
of  Euler-Lagrange equations describing a static and self-equilibrium distri- 
bution of dislocations. This means that the functional dependence qb --> &P[qb] 
should be invariant under the proper full linear group: 

VLc  GL+(3), ~[qbL] = ~[qb] (20) 

Further on we will assume that the distribution of dislocations is an 
orthogonal type (Section 2). In this case, the existence of the metric tensor 
C[qb] associated with the Bravais moving frame qb [equation (17)] enables 
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us to factorize the Lagrangian onto the dynamical scalar F[dO]: ~ ~ R and 
the natural Riemannian or pseudo-Riemannian volume form: 

d/x. = V[dO]e[dO], e[dO] = E '  A E 2 ̂  E 3 

V[dO] = (detll G~[dO]ll) '/= = b3(detn4S~dSdbl]) ~/2 
(21) 

where V[dO] is the local characteristic dimensionless volume of the distortion 
of  the lattice and e[dO] is the oriented volume induced on 23 by the Bravais 
moving frame dO, such that 

&a[dO] = F[dO] d/z.  (22) 

Because 

VL~ GL+(3), d / Z . L  = d/x. (23) 

therefore from the condition (20) it follows that the dynamical scalar F[dO] 
should be invariant under the proper full linear group: 

VLc  GL+(3), F[dOL] = F[dO] (24) 

If the Lagrangian ~[dO] is the first-order local, i.e., ~[dO] is dependent 
pointwise on algebraic values of  dO and of  its first derivatives, then from 
equations (7) and (24) it follows that the scalar F[dO] can be taken in the 
form of a function of the torsion tensor: 

F[dO] =f(S[dO]) (25) 

Let us take the so-called geometric dimensional frame reference (X, 0) = 
( X  A, OB) characterized by (Post, 1980) 

[ X  A] = c m ,  [ d X  A] = cm, [OA] = cm- '  (26) 

and oriented compatibly with the Bravais moving frame dO. Let us write in 
this chart 

E a = e A O A ,  E ~ = eAa dXA,  7"a = 'TABa d X  A A d X  B 

C = C a B d X A @ d X  B, S = S A B c O A @ d X B @ d X  c 
(27) 

Then 

A a  a 1 a a S A c = e  "rBc, "rBc =5( ec, B-- eB, c)  

a b a a 
= = 4b S A D S c B  , CA, B = OBe  A C A  B e A e B f a  b 2 c D 

(28) 
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and from equations (21), (22), and (25) it follows that 

3?[@] = L( ~A,  $A,B) d X '  ^ d X  2 A d X  3, [3?] = kg.  cm 

L( ~A, ~A,B) = f ( S A c )  v ( S A c ) ,  [L] = kg/cm 2 (29) 

v ( S A c )  = b3(detll4SCDSDBII)u2 , [Y] = [1] 

where f is an unspecified dynamical factor. 
The Euler-Lagrange equations corresponding to the Lagrangian (29) 

have the form of  the system of balance equations (Stawianowski, 1985) 

OB M A B  = a O'A, a = 1, 2, 3 (A, S = 1, 2, 3) (30) 

for two kinds of nontensorial geometric objects: 

O" a = ~aAOA, M a -~- M A B o  A @ OB, ~a A ~- OL/O ~A 

a = __MB A  ~ M AB = aLia  eA, B a a 
[oral = [M~] = kg/cm 2 

(31) 

where 0% are vector densities of weight 1 and Ma are skew-symmetric, 
twice-contravariant tensor densities of weight 1, transforming under GL§ 
according to the following rules: 

VLc  GL+(3), o'a[qbL]=Crb[qb]L b, M~[qbL]=Mb[qb]L b (32) 

The Euler-Lagrange equations can be written down equivalently in the 
covariant form 

V C M  AB = o "A (33) 
a a 

where V c denotes covariant differentiation in the sense of the Levi-Civita 
connection FAc[C] built of  the associated metric tensor C = C[qb]: 

FAc [c ]  = �89 Ae (OcCeB + oBCEc -- OeCsc ) (34) 

From the densities er. and M .  we can bui ld, in a standard way, two 
kinds of differential forms: 

O" a = 0 -1 d X 2  A d X 3 - o  -2 d X  I ^ d X 3 - F o  -3 d X  1 ̂  d X  2 
a a a 

M ~ = M ~ l d X 2 A d X 3 - M ~ 2 d X 1 A d X 3 + M ~ 3 d X 1 A d X  2 (35) 

Mab A = ~ B M  BA, [O'a] = [ M ; ]  = kg" cm 

The invariance properties of  the Lagrangian under consideration lead to 
two kinds of  conservation laws (Stawianowski, 1985). Namely, we obtain 
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the conservation laws describing the local translational invariance of  the 
Lagrangian, as a consequence of its invariance with respect to the parallel 
t ransport  along the base fields E~: 

dora = 0, a = 1, 2, 3 (36) 

and we obtain the conservation laws describing the global affine invariance 
[the invariance of  L under  GL+(3)]: 

dM~ -- 0, a, b = 1, 2, 3 (37) 

Let us observe that f rom the densities appearing in the Euler-Lagrange 
equations we can also build two tensorial objects having absolute dimensions 
of  stresses: 

A a ~r=ff~@Ea=o'~OA| n, orA=~ es 

M = M a |  a = M~BOA|174 c, M'~ ~ = MAB~e (38) a C 

[o ]  = [M] = kg / cm 2 

From equations (36) and (37) it follows that the tensor ~ represents the 
translational invariance, whereas the tensor M represents the affine invari- 
ance of  the considered Lagrangian. This suggests that we interpret o and 
M as the tensors of  internal stresses and couple stresses, respectively. The 
tensor of internal stresses ~ is the quantity analogous to the tensor of  force 
stresses  in elastic continua, but not describing a reaction of the material 
body on external forces. In the case under consideration internal stresses 
are caused by the self-interaction of dislocations and reflect the nonlinearity 
of  the theory. It can be shown that the Euler-Lagrange equations are 
equivalent to the covariant field equations for the internal stresses: 

C A C A VAO'B = 0  ~ - O A B O " c  
(39) 

= 

where FAce[C] and V c correspond to the associated metric tensor C = C[qb] 
[see equations (33) and (34)] and FACn[~] is the teleparallelism connection 
corresponding to the Bravais moving frame: 

A a FAc[~]  = e ec, B (40) 

The tensor of internal couple stresses M is the quantity analogous to the 
tensor of  couple force stresses considered in the theory of polar continua 
(but caused here by self-interaction of dislocations). In this theory the 
couple stresses are a consequence of assuming that the mechanical action 
of  one part  of  a body on another  across a surface is equivalent to a force 
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and moment distribution. It is consistent with asymmetry of the contra- 
variant representation o -A~ = CRCo'~ of the internal stress tensor. The Euler- 
Lagrange equations are also equivalent to covariant field equations for the 
couple stresses (Stawianowski, 1985): 

qb CB 
• c M A  +OcMCAB=O 

(41) 
Oc = 2S~c 

where V * denotes covariant differentiation in the sense of the tele- 
parallelism connection (40). Both kinds of internal stresses are directly 
related (Stawianowski, 1985) 

A c A  IIAtCD (42) 
O'B "~- ~J CD zva B 

Closed fields, describing uniformly dense distributions of dislocations 
(Section 1), form a very narrow and special class of Bravais moving frames. 
Nevertheless, they are very important because they provide a set of universal 
solutions of  our affinely-invariant equations. Namely, translating the 
theorem which has been formulated in Stawianowski (1986) into the 
language of this work, we obtain the following theorem. 

Theorem. Closed Bravais moving frames, describing distributions of 
dislocations of an orthogonal type, satisfy the field equations (41) for any 
choice of  the dynamical factor f in the definition (29) of the Lagrangian. 

This theorem means that the uniformly dense distribution of dislocations 
can be treated as the fundamental state of the distorted Bravais structure. 
Therefore, a fundamental state here is not the state of an ideal crystal 
structure, but the state of  its elementary distortion due to dislocations 
(cf. Trzesowski, 1987b, p. 1059). 

4. FINAL REMARKS 

The modern formulation of nonlinear field equations describing con- 
tinuously distributed dislocations is based on a gauge procedure applied 
to the Lagrange description of crystalline elastic bodies; this was done in 
the static case (e.g., Turski, 1966; Gairola, 1981) as well as in the dynamic 
case (e.g., Kadi6 and Edelen, 1983). In consequence these theories are based 
on the idea of a local invariance. In contrast to this approach, our theory 
is based on the global invariance [under the proper full linear group 
GL+(3)]; the internal couple stresses M are connected with this invariance. 
However, our theory is in line with the "gauge approach,"  according to 
which the breaking of  global translational symmetries describe the occur- 
rence of dislocations in an elastic crystalline body (e.g., Gairola, 1981; cf. 
also Trzesowski, 1987a, p. 317), because the Lagrangian under consideration 
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Table I 

Potentials: 
a 

eA e A 
Bravais moving coframe vector potential 

Field strengths, i.e., field acting upon other systems: 

2 ~AB = ~ B , A  - -  ~ A , B  FAn = ea.A -- ea,B 
Burgers field electromagnetic field strength 

Currents: 

_ j A  A a = ~ = oL/o e A --JA = oL/OeA 
a 

self-interaction currents electric currents 
(force stresses) 

Field momenta, i.e., field produced by currents: 

M AB = aL/O ~A,B MAB = oL/OeA,R 

couple force stresses field produced directly by sources 

Field equations: 

~C A / l A B  = _ j a  V~MAB = _jA 
a 

balance of stresses Maxwell equations 
and couple stresses 

satisfies additionally the postulate of the local translational invariance; the 
internal stresses cr are connected with this invariance. 

Let us observe that the field equations (33) have a form which resembles 
the equations of electrodynamics (Stawianowski, 1986). Thus, from the 
formal point of view, our theory resemble "3-fold electrodynamics." Its 
basic objects are linear defects, described by pairs (Ea, ra), a = 1,2, 3, 

interacting mutually with each other. They are massless, because the 
Lagrange function L does not involve any term built algebraically of the 
field �9 alone. Table I provides a brief "dictionary" of this analogy with 
classical electrodynamics (Stawianowski, 1985). 
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