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Abstract

In this Letter we address some basic questions about chaotic cryptography, not least the very definition of chaos in discrete systems. We propose
a conceptual framework and illustrate it with different examples from private and public key cryptography. We elaborate also on possible limits

of chaotic cryptography.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Chaos-based cryptography (sometimes called ‘chaotic’ cryp-
tography) has been around for more than a decade by now. Dur-
ing this time of foundation and development, it came to mean
different things, mostly depending on the implementation. So,
we can speak of additive masking [1], chaos shift keying [2],
two-channel communication [3], message embedding [4], etc.
At the beginning, the message carriers were analogue signals,
so that chaos theory could be applied as such. Later, the sig-
nals became digital and, hence, the application of chaos theory
was not justified any more. Further concern came from the fact
that, in general, the proposers of chaotic ciphers did not take
due care about security or performance issues. As a result, most
of these cryptosystems were shown to be weak against one or
the other type of attack, while the safer ones were typically
too slow to compete with conventional ciphers. In the mean
time, authors became more cautious about cryptanalysis and
implementation, which is absolutely necessary if chaotic cryp-
tography has to consolidate as a real alternative; see [5] for
a review of attacks on chaos-based ciphers and a battery of
practical recommendations about security. In any case, chaotic
cryptography continues to be an active research field, as shown

* Corresponding author.
E-mail addresses: jm.amigo@umh.es (J.M. Amigd), Ikocarev @ucsd.edu
(L. Kocarev), jszczepa@ippt.gov.pl (J. Szczepanski).

0375-9601/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2007.02.021

by the large number of papers being published, and it is thriving
in form of new and interesting proposals in all areas of modern
cryptology.

Roughly speaking, there are two approaches when using
chaotic dynamics in cryptography. The first one uses chaotic
systems to generate pseudo-random sequences, which are then
used as keystreams to mask the plaintext in a manifold of ways.
In the second approach, the plain text is used as initial state and
the ciphertext follows from the orbit being generated (see, e.g.,
[6] and [7] for an interesting review). The first approach cor-
responds to stream ciphers, while the second to block ciphers,
both in secret and public key cryptography. See [8—13] for new
cryptographic techniques. Beside these traditional applications,
chaos-based schemes are currently being proposed for more
novel applications too, like hashing, key-exchange protocols,
authentication, etc., although we will not deal with them here.

One major issue in digital chaotic cryptography is the nu-
merical implementation. Since computers can represent real
numbers up to certain precision only, the orbits computed dif-
fer, in general, from the theoretical ones. (As a matter of fact,
numerical precision does not deteriorate along the orbit if its
calculation involves multiplications only by integers, as in the
case of affine transformations on the n-torus.) More funda-
mentally, any orbit in a finite-state phase space is necessarily
periodic or, put in other words, there is no chaos in finite-state
systems (but see [14]). To circumvent this problem, the practi-
tioners of chaotic cryptography usually resort to high precision
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arithmetic libraries with which several hundreds of exact dec-
imal digits can be obtained. Notwithstanding, there are two
good reasons for not using floating-point arithmetic in chaos-
based cryptography. First, ‘random’ floating-point numbers are
not uniformly distributed over any given interval of the real
axis (see [15, Section 4.2.4]). Furthermore, there exist redun-
dant number representations. Indeed, due to the normalized
calculations in floating-point arithmetic, different floating-point
numbers can represent the same real signal value. Second—the
most important reason—there are no analytical tools for under-
standing the periodic structure of the orbits in the floating-point
implementation of chaotic maps. Consequently, we recommend
to formulate the discrete chaotic dynamics on the integers, as
we do below.

The scope of this Letter is to formalize the concept of chaotic
cryptography at the light of those principles that have stood the
pass of time. Furthermore, it should be explained, what ‘chaos’
means in discrete systems. We propose a definition of discrete
chaos and show that discretization and truncation of chaotic or-
bits cannot provide the most chaotic permutations in the limit
of ever finer discretizations, what unveils some basic (though
asymptotic) shortcoming of this technique. Independently of
the approach to discrete chaos, the cryptographic primitives
and ciphers considered in the literature share definitively some
general properties that characterize them as chaotic. We have
tried to distilled them out of the great variety of such proposals
and hope that our present contribution will bring some unifying
ideas into the picture.

2. Chaotic cryptographic primitives

We have explained in the introduction how chaotic cryptog-
raphy uses discrete approximations of chaotic maps, rather than
chaotic maps themselves. These approximations, in turn, can be
directly translated into maps on the integers—the kind of maps
used by conventional cryptography. We begin by formalizing
the concept of discrete approximation.

The minimal framework we need is that of measure the-
ory. We say that (X, A, i) is a measure space if X is a non-
empty set, A is a sigma-algebra of subsets of X and u is a
measure on (X, A). If u(X) < oo, (X, A, n) is called a finite-
measure space. Typically, X will be a compact topological
or even metric space (think of a finite interval of R" or of
an n-torus). In this cases, A can be chosen to be the Borel
sigma-algebra (generated by the open sets) and w the corre-
sponding Lebesgue measure. By a chaotic map on X we will
understand a p-invariant map f:X — X (ie., f'A € A and
/,L(f_lA) = n(A) for all A € A) that is strong mixing with re-
spect to w (i.e., lim, o (A1 N f7"A2) = w(A1)(A2) for
all Ay, A € A). Finally, we say that P = {A},..., Ay} C
A is a partition of X if |JY_; A, = X and A; N A; = ¢
for all i # j. A norm of P is any uniform measure of the
size of its elements (e.g., maximal length, maximal diame-
ter, etc.). In order to streamline the notation, we will usually
refer only to X, with the underlying A and p being under-
stood.

Definition 2.1. Let X be a finite-measure space and f: X —
X amap. Let Xpo ={A1,..., An(a)} be a family of partitions
of X, labelled by a parameter A, say, the partition norm, such
that lima_.0 XA = &, the partition of X into separate points.
Furthermore, given a family of maps fa: XA — X, define the
extensions fA X —> X as fA(x) = fa(Ay) if x € A, € XA.
We say that (X, fa) is a discrete approximation of (X, f) if,
moreover, lima_q fA = f in some relevant sense (depending
on the structure we put on X).

This definition of discrete approximation is an idealization
of what actually happens when computing real functions with
computers, as the following example shows.

Example 2.2. Let X = [0,1], XA = {[;: 0<i < 10° — 1},
where I; =[i107¢, (i + 1)107¢) for 0 <i < 10° — 2, I1ge—1 =
[1—107¢ 1]and A =107¢. Set

faly) = f(i107°),
where f:[0, 1] — [0, 1] is a continuous function, and

10°—1

fa@) =" F(i107)xs;(x)
=0

(where x;; is the characteristic function of /;, i.e., x7;(x) = L if
x € I and 0 otherwise), so that fa(x) = f(i107°¢) iff i107¢ <
x < (i + 1)107¢. Because of continuity, | f(x) — f(y)| < ¢ if
|x —y| < 8. Choose now A < § and i = |x10°] to conclude that
|f () = fa(o)] = [f(x) — f(i107¢)| < &. Hence, (Xa, fa) is

a discrete approximation of (X, f).

Clearly, the intervals I; of Example 2.2 consist of all real
numbers being internally represented by our ideal computer as
i107¢. Equivalently, we could have defined fa rather on a dis-
crete set S C [0, 1] as, e.g., fa(i107¢) = [ f(107¢)10°]10™°
on {0,107¢,...,1 —107¢, 1}. We go from one to the other for-
mulation by taking S to comprise, say, the left endpoints of X a
(except for the rightmost interval, where we take also the right
endpoint) and restricting fa from XA to S or, in the other direc-
tion, by extending fa from S to X A constantly on each element
of X a. But the formulation with partitions is technically more
convenient (especially in higher-dimensional intervals) since
then fa extends straightforwardly to fA and, in fact, both can
be identified—as we will do wherever convenient.

The next example may result less familiar.

Example 2.3. (See [16].) Suppose f is an automorphism of the
finite-measure space (X, A, u), i.e., f is a one-to-one map of
X onto itself such that both f and f~! are u-invariant. We
consider sequences of finite partitions {P,} of the space X,
P ={P": 1 <k < gy}, such that lim,,_, o, P, = € (the parti-
tion of X into separate points) and sequences of automorphisms
{ fn} such that f, preserves P, (i.e., f, sends every element of
‘P, into an element of the same partition). We say that an auto-
morphism f of the space (X, A, 1) possesses an approximation
by periodic transformations with speed (n), if there exists a
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sequence of automorphisms f, preserving P, such that

qn
S w(F(PM) & fu(PM)) <9(@n), n=1.2,...,
k=1

where A stands for symmetric set difference and ¥ is a func-
tion on the integers such that ©*(n) — 0 monotonically. The
sequence (P, f,) is a discrete approximation of (X, f) (with
the conventional label A — 0 replaced here by n — 00).

Moreover, it is straightforward to translate discrete approxi-
mations ( fa, Xa) into maps on, say, Zy ={0,1,..., M — 1}.
In fact, if

fa(A) =x; €Ay,

set first Fa(i) = j, where 1 <i, j < N(A), to get a map on the
labels of XA ={A1,..., An(a)}. Furthermore, if x; = fa(A;)
and x; = fa(A;) belong to different partition elements for
all i # j, the map Fa will be a bijection on {1,..., N(A)}
or, equivalently, a permutation of N(A) elements. More gen-
erally, the orbits of Fa will decompose into eventually peri-
odic and periodic cycles on subsets of {1, ..., N(A)}; call Fy
the restriction of Fa to an invariant set Sy; = {i1,...,ipm},
FA(Sy) = Sy, and, without loss of generality, identify its in-
variant domain with Zy;, M < N(A).

Throughout, we will also assume that the permutation Fyy is
irreducible, i.e., its domain Zj; cannot be further decomposed
in invariant subsets under the action of Fa. These irreducible
pieces can be directly generated by means of orbits. Indeed, let
(XA, fa) be, as before, a discrete approximation of (X, f), and
let (notation as in Definition 2.1) xj 11 = fa(xj) € An,,,, j =
0,1,...,M —2,be alength M trajectory of xo € A,, under fa
such that Anj FAp for j#£k,0<j,k<M-2,and Ay, |, =
Ay set f_A(x,,Mfl) = X,. The map f (or, equivalently, fA)
induces then the obvious permutation

Fy(i)=nj if fa(xn,) =%, (1)

on {ng,...,ny—1} and thus also on Zy; ={0,1,..., M — 1},
M < N(A).

Intuitively, discrete approximation of chaotic maps are ex-
pected to generate permutations with ‘nice’ mixing properties
and, therefore, appropriate for cryptographic applications.

Definition 2.4. Discrete approximations of chaotic systems
(X, f) in form of permutations (Zys, Fys) are called chaotic
cryptographic primitives. Furthermore, we say that a crypto-
graphic algorithm is chaotic if some of its building blocks is
a chaotic cryptographic primitive.

In turn, the chaotic cryptographic primitives (Zys, Fys) can
be eventually used to generate permutations on other sets, no-
tably the set {0, 1} of n-bit blocks (with M = 2").

3. Discrete chaos

Before illustrating in the next section the concepts of chaotic
cryptographic primitives and algorithms with examples, we

would like to elaborate on chaotic cryptographic primitives
(Zyg, Fur) from the point of view of discrete chaos [14].

Definition 3.1. Let S = {£p,&;,...,&y—1} be a linearly or-
dered set by means of the order <, endowed with a metric
d(-,-),and let F:S — S be a bijection (or, equivalently, an M-
permutation). We define the discrete Lyapunov exponent of f
on (S, <,d), A, as
M=2
1 d(F(&), Fiv1)
=3
M—1 d&i, &iv1)

i=0

As in the usual definition of Lyapunov exponent, we have
also taken natural logarithms. Without loss of generality, we
may assume (S, <) = (Zy, <) setting, if necessary, F (i) =
F(&;) and d(i, j) = d(&;,&;). Observe that Ar depends both
on the order < and on the metric d, but it is invariant under
rescaling and, furthermore, has the same invariances as d.

Example 3.2. Suppose that M = 2m, d is Euclidean distance,
and define

FIo(g) = {m+k ?fé:Zk, 0<k<m—1,
k ifE=2k+1, 0<ks<m—1,
on Zy =1{0,1,..., M — 1}. The discrete Lyapunov exponent
of Fy™ is
m—1
)\Fll\?ax = m—1 lnm—|— m—1 ln(m+1)

Observe for further reference that limps_ o0 A Fmax = 00.

Theorem 3.3. (See [17].) Let I be a one-dimensional in-
terval and f:1 — I a chaotic map with respect to the
measure [, whose derivative is piecewise continuous. Then
limpys— 00 Ay, = A g, where

Af=f1n|f’<x)|du<x>
1
is the Lyapunov exponent of f.

From the results in [18] and [19] it can be proved that if
| f'| <C, then

e — < S
Fy f\M

The generalization of Theorem 3.3 to chaotic maps on
higher-dimensional intervals requires the introduction of the
discrete Lyapunov exponent of order v = 1,2, ...; see [14] for
details.

Given a family of permutations (Zys, F7), how can be de-
cided whether they are chaotic cryptographic primitives, i.e.,
whether there a chaotic map f exists such that F, is generated
by f in the way explained above? In virtue of Theorem 3.3,
a necessary condition is 0 < limpy/— o0 AF,, < 00. In particular,
this excludes those families of permutations (like (Zys, F3**))
such that limp/— o AF,, = 00. On the other hand, given a fam-
ily of permutations (Zy, Far) generated by a chaotic map f
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on, say, [0, 1], it is impossible, in general, to recover f since,
on the way from f to Fjs, essential information on f gets
lost. Only in cases similar to Example 2.2, in which each Fy,
has been gained via a uniform partition Xp = {[;: 0 <i <
N(A) — 1}, M < N(A), and the action of Fj; is known on
{0,1,..., N(A) — 1} for a sequence N(A) — 0o, we can re-
verse the recipe (1),

Iy ="L if Fy()=j
fA(t)—M if Fy (i) =,

and reconstruct ([0, 1], f) by means of the discrete approxima-
tions (XA, fa) in the usual way.

Definition 3.4. We say that the family of permutations
(Zm, Fyr) is discretely chaotic if 0 < limp/— 00 Ay, < 00.

This definition can be generalized to non-bijective maps on
ordered sets; see [14] for details.

It can be proven [14] that Af,, < A Fmax for all permutations
Fyon Zy ={0,1,..., M — 1} endowed with Euclidean dis-
tance d(i, j) = |i — j|. Thus, we may claim that F;** is the
‘most discretely chaotic’ map on (Zy, <,| - |) in the sense
that its discrete Lyapunov exponent takes the largest possible
value—but (Zy, F ™) is not a chaotic cryptographic primitive
because limp;_, o AF,, = 00. We come to the conclusion that
discretization and truncation of chaotic orbits cannot deliver the
most discretely chaotic permutations—at least on (Zyy, <, | - |)-
This no-go result sets a kind of theoretical limit to the possibil-
ities of chaotic cryptography.

4. Examples of chaotic primitives

In this section, we present some typical chaotic primitives
that, furthermore, are used in ciphers proposed in the literature.

4.1. Finite-state tent map

For a positive integer M >2 anda e R with 0 <a < M, let
fa:10, M] — [0, M] be the rescaled skew tent map

oo |E  Osisa
Ja@ = v o<y,

The map f, is one-dimensional, exact, and therefore mixing
and ergodic. Its Lyapunov exponent Ay, is given by

M —a
ETM "M T M M
For a hash function based on the (discretization) of the tent map,
see [20].
The finite-state tent map Fapy:{1,2,....,M} — {1,2,
..., M} is the bijection defined as

(4] (1<E<A),
|7 (M =€) [ +1 (A<ESM),

Fam§)=

where A takes integer values in {1,2, ..., M}. The inverse of
F4,p is calculated as

g ifo(m =n, &> =2
it =n, & <

Fium=1g Mty
& ifo(m)=n+1,
where
A A
ElE{M”J’ §2E[<M—1)U+M—‘
and

by =n+| oy | = | 2yl

n=n M n M n .

The encryption and decryption functions are Fy ,,(¢§) and
FA_,'/'W (1), respectively, where n is the numbers of rounds.

4.2. Finite-state Chebyshev maps

The Chebyshev polynomial maps 7, : R — R of degree n =
0,1, ... are defined the recursion

Ty(x) =2xTy—1(x) — Tp—2(x) forn=2,

and Ty(x) = 1, Ti(x) = x. The interval [—1, 1] is invariant
under the action of the map T,,: T,([—1, 1]) = [—1, 1]. Alter-
natively, one can define

T,(x) =cos(narccosx), —1<x<I.

The Chebyshev polynomial 7, restricted to [—1, 1] is a well-
known chaotic map for all n > 2: it has a unique absolutely
continuous invariant measure,

1
e

and Lyapunov exponent Inn > 0 with respect to w. For n =2,
the Chebyshev map reduces to the logistic map.

It is straightforward to prove that Chebyshev polynomials
have the semi-group property:

Tr(Ts(x)) =T (Tr(x)) =T (x).

The finite-state Chebyshev map Fy p:{0,1,.... M — 1} —
{0,1,...,M — 1}, M € N, is defined as
Fn,M(g) = Tn(é)

The semi-group property of the finite-state Chebyshev maps
can be used in key-exchange protocols or even in public-key
algorithms [21].

(mod M).

4.3. Finite-state n-dimensional torus automorphisms

An automorphism of the n-torus R” /Z" is implemented by
an n x n matrix U, with integer entries and determinant +1.
The requirement that the matrix U, has integer entries ensures
that U, maps the torus into itself. The requirement that the de-
terminant of the matrix U, is &1 guarantees invertibility. U,
is strong mixing if none of its eigenvalues is a root of unity.
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The logarithm of the largest eigenvalue of U, coincides with
the Lyapunov exponent of the automorphism (with respect to
Lebesgue measure). Torus automorphisms are typically used in
diffusion layers (i.e., to spread local changes).

The n-torus automorphism

y=U,x (modl),

where x, y € [0, 1]", generates the finite-state n-torus map

n=U,& (modM),

where M € N and &,n € (Zy)". As an example, consider the
family of 2-dimensional cat maps

my_(g+1 g\ (&
(m)_( 1 1)<§2) (mod 256).

where &1, &, 111, 12, & € Z2s6- The special case g = 1 is known
as the pseudo-Hadamard transform (PHT),

2 1
Hz—(l 1>,

and it is used in various cryptosystems because it requires only
two additions in a digital processor.

Finite-state maps of the 2- and 4-torus have been proposed
in the literature for the diffusion layers of, for instance, 8-byte
Feistel ciphers whose half-round function acts on 4-byte blocks
[22]. A half-round consists of four chaotic 4 x 4 S-boxes, each
one built by interleaving the PHT and the 4-byte Hadamard-
type permutation

1 0 0 O
0O 0 1 0
Re=1o 10 0
0 0 0 1
in the form
m &1
m | _ &
= H4R4Hy (mod 256),
n3 &
n4 &4
where

H, O

Hy = ( 0 H2) .

The branch number and the minimal Euclidean stretching of
this sort of mixing transformations (or layers) were studied in
[22]. The branch number is the sum of the number of active
input S-boxes and the number of active output S-boxes, min-
imized over the input space; it is an important parameter in
differential cryptanalysis.

Affine transformations on the n-torus in chaos synchro-
nization-based cryptography have been studied in [23]. As men-
tioned in the introduction, these maps have the nice property
that the precision of the initial point does not degrade along its
orbit.

4.4. Substitutions based on the approximation of mixing maps

From the mathematical point of view, a block cipher is a
family of permutations on binary vectors, parameterized by the
key. Alternatively, we may focus only on the permutations de-
fined by some components of the cipher like, most notably,
square substitution boxes. Thus, let F;, be a permutation of n-bit
blocks (or an n x n ‘S-box’). Define the linear approximation
probability of F,, (LPf, for short) as

LPr, = max LPf, (o, B),
o, B#£0

where

1 2
LPr, (o, B) = (2p — 1)? =4<p — 5) ,

_#E €Zi: Eoa=Fy(§)op}
p= o
and o :=&101 @ - - - @ &, is the parity of the bitwise prod-
uct of £ and « (and analogously for F;, (&) o 8). Next, define the
differential approximation probability of F;, (DPf, for short) as

DPyr = max DPg(a, B),
a#0,p

where « is the so-called input difference, 8 the output differ-
ence and

#HE ey F(§)DF(E ®a)=p}
on :

Here E o= D ay,..., & & «,) denotes the component-
wise XOR (or vector addition modulo 2) of the n-bit blocks &
and o (and analogously for F(§) @ F(§ & «)); see [24] for
details. LPr, and DPf, measure the immunity of the block
cipher F) to attacks mounted on linear and differential crypt-
analysis, respectively, immunity being higher the smaller their
values. In [24] we have shown that if F, is a cyclic periodic
approximation of a mixing automorphism F and some assump-
tions are fulfilled, then LPfr, and DPf, get asymptotically close
to their greatest lower bounds 1/2" and 1/2"~!, respectively,
thus obtaining an arbitrarily close-to-optimal immunity to both
cryptanalyses—the faster the approximation of F, to F, the
higher the immunity of the permutation F, [24]. Therefore, we
have proven, as suggested by Shannon, that, in principle, mix-
ing transformations may indeed be used in encryption systems.
Unfortunately, the proofs are non-constructive so that one has
to content oneself with heuristic implementations of the under-
lying idea.

As an example, consider the 2-torus automorphism U =
(t j) with

DPr(a, B) =

t11 = 587943273,
1 =2,

t12 = 185921552200509715,
ty = 632447247.

For this chaotic map, the corresponding (heuristic) periodic ap-
proximation with n = 18 has the following values of DP and
LP: LP = 0.00002629 with |[LP —2~18] =2.25 x 1073, and
DP = 0.00003052 with [DP — 2717 =2.29 x 1077 [24].
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5. Final remarks and conclusions

In this Letter we have proposed some theoretical concepts
underlying digital chaos-based cryptography and presented
some basic implementations of chaotic cryptographic primi-
tives. Needless to say, our exposition is far from exhaustive,
being rather meant as a general view of what is going on in a
field of rapid growth. Also for this reason, we have renounced
to present here more recent developments in chaotic cryptology,
since time is needed to asses their security.

To complete the picture, some words of caution are in or-
der here. Although, at theoretical level, it seems that chaotic
systems are ideal candidates for cryptographic primitives (re-
member, for example, that periodic approximations of mixing
automorphisms have arbitrary close to optimal immunity to lin-
ear and differential cryptanalysis, Section 4.4), at the practical
level, chaotic ciphers are still slower than the corresponding
conventional ones. Thus, the public-key cipher proposed in
[21], based on the finite-state Chebyshev map, is slower than
RSA, and the 128-bit block cipher proposed in [22], that in-
cludes sixteen 8 x 8 S-boxes (all the same) designed with the
finite-state tent map and a finite-state 4-dimensional torus map
as chaotic mixing transformation, is also slower than the best
conventional algorithms, such as AES. In connection with this,
let us remind that we showed in Section 3 that chaotic cryp-
tographic primitives cannot be the most discretely chaotic per-
mutations in the sense of Definition 3.4. Since this result is of
asymptotic nature, we believe that it has no practical conse-
quences but, nevertheless, it does put limits (if theoretical) to
chaotic cryptography.

We may conclude that reaching the same standards of secu-
rity and speed as in conventional cryptography, should be the
priority of chaotic cryptography in the next future.
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